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We present a search for charged Higgs bosons in top quark decays. We analyze the e+jets,
µ+jets, ee, eµ, µµ, τe and τµ final states from top quark pair production events, using data from
about 1 fb−1 of integrated luminosity recorded by the D0 experiment at the Fermilab Tevatron
Collider. We consider different scenarios of possible charged Higgs boson decays, one where the
charged Higgs boson decays purely hadronically into a charm and a strange quark, another where
it decays into a τ lepton and a τ neutrino and a third one where both decays appear. We extract
limits on the branching ratio B(t → H+b) for all these models. We use two methods, one where the
tt̄ production cross section is fixed, and one where the cross section is fitted simultaneously with
B(t → H+b). Based on the extracted limits, we exclude regions in the charged Higgs boson mass
and tan β parameter space for different scenarios of the minimal supersymmetric standard model.

PACS numbers: 13.85.Lg, 13.85.Qk, 13.85.Rm, 14.65.Ha, 14.80.Cp

I. INTRODUCTION

In many extensions of the standard model (SM), in-
cluding supersymmetry (SUSY) and grand unified the-
ories, the existence of an additional Higgs doublet is

required. Such models predict multiple physical Higgs
particles, including three neutral and two charged Higgs
bosons (H±) [1]. If a charged Higgs boson is sufficiently
light, it can appear in top quark decays t → H+b [2].

Within the SM, the top quark decay into a W boson
and a b quark occurs with almost 100% probability. The
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tt̄ final state signatures are fully determined by the W
boson decay modes. Measurements of top quark pair
production cross sections σtt̄ in various channels [3] are
potentially sensitive to the decay of top quarks to charged
Higgs bosons. The presence of a light charged Higgs bo-
son would result in a different distribution of tt̄ events
between different final states than expected in the SM.

In this Letter we compare the number of predicted and
observed events in various tt̄ final states and derive 95%
confidence level (CL) limits on the production of charged
Higgs bosons from top quark decays. The analysis is
based on data collected with the D0 detector between
August 2002 and February 2006 at the Fermilab Tevatron
pp̄ Collider at

√
s = 1.96 TeV. The analyzed datasets

correspond to an integrated luminosity of about 1 fb−1.
The decay modes of the charged Higgs boson depend

on the ratio of the vacuum expectation values of the two
Higgs doublets, tan β. For small values of tan β it is
dominated by the decay to quarks, while for larger val-
ues of tanβ it is dominated by the decay to a τ lep-
ton and a neutrino. We consider three models for the
charged Higgs boson decay: a purely leptophobic model,
where the charged Higgs boson decays into a charm and a
strange quark, a purely tauonic model, where the charged
Higgs boson decays exclusively into a τ lepton and a neu-
trino, and a model where both decays can occur. In
all models we fix the tt̄ cross section to the theoretical
value within the SM and extract B(t → H+b). In the
case of the tauonic model, in addition we extract σtt̄ and
B(t → H+b) simultaneously, thus yielding a limit with-
out assuming a particular value of the tt̄ cross section.

A scenario in which the charged Higgs boson decays
exclusively into quarks can be realised, for instance, in a
general multi-Higgs-doublet model (MHDM) [4]. It has
been demonstrated that such leptophobic charged Higgs
bosons with a mass of about 80 GeV could lead to notice-
able effects at the Tevatron if tan β ≤ 3.5 [5]. Moreover,
large radiative corrections from SUSY-breaking effects
can lead to a suppression of H+ → τ+ν compared to
H+ → cs̄ [6]. In that case, for small tanβ, hadronic
charged Higgs decays can become large in both the two-
Higgs-doublet (2HDM) [5] and the minimal supersym-
metric standard model (MSSM).

For values of tan β ≥ 20 branching ratios are model
dependent. Values of B(H+ → cs̄) close to one are
predicted in specific CP-violating benchmark scenarios
(CPX) with large threshold corrections [7]. For other
models, the tauonic decays of the charged Higgs boson
dominate at high tan β, for example, in the mmax

h bench-
mark scenario [8] where B(H+ → τ+ν) can be close to
one.

II. EVENT SELECTION AND ANALYSIS
METHOD

This search for charged Higgs bosons is based on the
following tt̄ final states: the dilepton (``) channel where

both charged bosons (W + or H+) decay into a light
charged lepton (` = e or µ) either directly or through the
leptonic decay of a τ , the τ+lepton (τ`) channel where
one charged boson decays to a light charged lepton and
the other one to a τ -lepton decaying hadronically, and the
lepton plus jets (`+jets) channel where one charged bo-
son decays to a light charged lepton and the other decays
into hadrons. We select events to create 14 subchannels:
(i ) ee (µµ) subchannel with two isolated high transverse
momentum (pT ) electrons (muons) and at least two high
pT jets; (ii ) eµ subchannels with one isolated high pT

electron and one muon and exactly one or at least two
jets; (iii ) τe (τµ ) subchannel with one high pT hadron-
ically decaying τ , one electron (muon) and at least two
high pT jets one of which is identified as a b jet; (iv )
`+jets subchannels with one isolated high pT electron
(muon), exactly three or at least four high pT jets, further
split into subsamples with one or at least two b-tagged
jets. Details of the event selection in the individual sub-
channels can be found in Ref. [3]. All event samples are
constructed to be mutually exclusive.

In the `+jets channel the main background consists
of W+jets production, with smaller contributions from
multijet, single top quark and diboson production. The
background contribution in the τ` channel is domi-
nated by multijet events, while the most important back-
ground in the `` channel emerges from Z+jets produc-
tion. The sample composition of all 14 subchannels, as-
suming B(t → W+b) = 1 (hence B(t → H+b)=0), is
given in Ref. [3].

The simulation of the W+jets and Z+jets backgrounds
as well as the tt̄ signal with no charged Higgs boson decay
is performed using alpgen [9] for the matrix element
calculation, followed by pythia [10] for parton showering
and hadronization. Diboson samples are generated using
pythia, while single top quark events are simulated using
the singletop [11] generator. The generated events are
processed through a geant-based [12] simulation of the
D0 detector and the same reconstruction programs as
used for the data.

We simulate the signal containing charged Higgs
bosons with pythia Monte Carlo event generator [10],
separately for the decays tt̄ → W+bH−b̄ (and its charge
conjugate) and tt̄ → H+bH−b̄. The total signal selection
efficiency is calculated as a function of B ≡ B(t → H+b)
as given by:

εtt̄ = (1−B )2 ·εtt̄→W+bW−b̄+2B (1−B )·εtt̄→W+bH− b̄

+ B2 ·εtt̄→H+bH− b̄ , (1)

yielding the number of tt̄ events as a function of B. The
efficiencies εtt̄→W+bH− b̄ and εtt̄→H+bH− b̄ are evaluated for
the assumed H+ decay modes. Figure 1 shows the num-
ber of expected events for different values of B(t → H+b)
assuming MH+ = 80 GeV and either B(H+ → cs̄) = 1
or B(H+ → τ+ν) = 1, compared to the number of ob-
served events in the considered channels. The `+jets en-
tries with one and two b-tags represent the sum of four
`+jets subchannels each (with different light lepton flavor
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FIG. 1: Number of expected and observed events versus final
state for MH+ = 80 GeV assuming either exclusive τ+ν (a)
or exclusive cs̄ (b) decays of the charged Higgs boson.

and = 3 and ≥ 4 jets). The dilepton contribution corre-
sponds to the sum of ee, µµ and two eµ subchannels, and
the τ+lepton one shows the sum of τe and τµ subchan-
nels. For a non-zero branching ratio B(t → H+b → cs̄b)
the number of events decreases in the `+jets, `` and
τ` final states. In case of a non-zero branching ratio
B(t → H+b → τ+νb) the number of predicted events
increases in the τ` channel while it decreases in all other
channels. The latter are often called disappearance chan-
nels.

III. EXTRACTION OF LIMITS ON B(t → H
+

b)

The extraction of B(t → H+b) is done by calculating
the predicted number of events in 14 search subchannels
for various charged Higgs boson masses and branching
ratios, and performing a maximum likelihood fit to the
number of observed events in data. We constrain the
multijet background determined from control samples in
the `+jets and τ` channels by including Poisson terms in
the likelihood function. We account for systematic uncer-
tainties in the fit by modeling each independent source of
systematic uncertainty as a Gaussian probability density
function G with zero mean and width corresponding to
one standard deviation (SD) of the parameter represent-
ing the systematic uncertainty. Correlations of system-
atic uncertainties between channels are naturally taken
into account by using the same parameter for the same
source of systematic uncertainty. The parameter for each
systematic uncertainty is allowed to float during the like-
lihood fit. We maximize the likelihood function

L =

14∏

i=1

P(ni, mi)×
14∏

j=1

P(nj , mj)×
K∏

k=1

G(νk; 0, SD) , (2)

with P(n, m) representing the Poisson probability to ob-
serve n events when m events are expected. The product
runs over the subsamples i, and multijet background sam-
ples j. K is the total number of independent sources of
systematic uncertainty, with νk being the corresponding
nuisance parameter. The predicted number of events in
each channel is the sum of the predicted background and
the expected tt̄ events, which depends on B(t → H+b).

During the fit, the tt̄ cross section is set to 7.48+0.55
−0.72 pb,

corresponding to an approximation to the next-to-next-
to-leading-order (NNLO) QCD cross section that in-
cludes all next-to-next-to-leading logarithms (NNLL) rel-
evant in NNLO QCD [13] at the world average top quark
mass of 173.1 GeV [14]. The uncertainty on the theoret-
ical cross section includes the uncertainty on the world
average top quark mass.

Since we find no evidence for a charged Higgs bo-
son, we extract upper limits on B(t → H+b), assum-
ing that B(H+ → cs̄) = 1, or B(H+ → τ+ν) = 1, or
a mixture of both. The limit setting procedure follows
the likelihood ratio ordering principle of Feldman and
Cousins [15]. The determination of the limits requires
the generation of pseudo-datasets. We generate ensem-
bles of 10,000 pseudo-datasets with B(t → H+b) varied
between zero and one in steps of 0.05, fully taking into
account the systematic uncertainties and their correla-
tions.

Table I shows an example of the uncertainties on
B(t → H+b) for MH+ = 80 GeV in the tauonic and lep-
tophobic charged Higgs boson models. The main sources
of systematic uncertainty on B(t → H+b) include the un-
certainty on the luminosity of 6.1% and the tt̄ cross sec-
tion, both for the tauonic and leptophobic models. These
two dominant systematic uncertainties are approximately
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of the same size as the statistical uncertainty.

TABLE I: Uncertainties on B(t → H+b) for the leptophobic
and tauonic model, assuming MH+ = 80 GeV.

leptophobic tauonic
Source +1 SD −1 SD +1 SD −1 SD

Statistical uncertainty 0.057 -0.058 0.047 −0.046
Lepton identification 0.017 -0.017 0.010 −0.010

Tau identification 0.004 -0.004 0.006 −0.006
Jet identification 0.009 -0.009 0.010 −0.010
b jet identification 0.031 -0.030 0.030 −0.030
Jet energy scale 0.016 -0.019 0.020 −0.020
Tau energy scale 0.004 -0.004 0.004 −0.004
Trigger modeling 0.007 -0.011 0.007 −0.006
Signal modeling 0.023 -0.024 0.010 −0.010

Background estimation 0.013 -0.014 0.011 −0.010
Multijet background 0.014 -0.016 0.019 −0.017

σtt̄ 0.059 -0.085 0.040 −0.054
Luminosity 0.056 -0.060 0.035 −0.036

Other 0.017 -0.017 0.010 −0.010
Total systematic uncertainty 0.097 -0.118 0.071 −0.079

TABLE II: Expected and observed upper limits on the
branching ratio B(t → H+b) for each generated H+ mass.

leptophobic tauonic tauonic from
simultaneous fit

MH+ (GeV) exp obs exp obs exp obs σtt̄ (pb)

80 0.25 0.21 0.18 0.16 0.14 0.13 8.07+1.17
−1.04

100 0.25 0.22 0.17 0.15 0.13 0.12 8.11+1.13
−1.00

120 0.25 0.22 0.18 0.17 0.15 0.14 8.12+1.20
−1.05

140 0.24 0.21 0.19 0.18 0.18 0.19 8.26+1.39
−1.20

150 0.22 0.20 0.19 0.19 0.21 0.25 8.63+1.65
−1.38

155 0.22 0.19 0.19 0.18 0.24 0.26 8.49+1.75
−1.45

Figure 2 shows the expected and observed upper lim-
its on B(t → H+b) assuming B(H+ → cs̄) = 1 or
B(H+ → τ+ν) = 1 as a function of MH+ along with the
one standard deviation band around the expected limit.
Table II lists the corresponding expected and observed
upper limits on B(t → H+b) for each generated MH+ . In
the tauonic model we exclude B(t → H+b) > 0.15−0.19
and B(t → H+b) > 0.19 − 0.22 in the leptophobic case.

The CDF collaboration reported a search for charged
Higgs bosons using different tt̄ decay channels with a data
set of about 200 pb−1 [16], resulting in B(t → H+b) <
0.4 within the tauonic model. Recently, D0 reported
limits on B(t → H+b) for the tauonic and leptopho-
bic models extracted from cross section ratios [3] and for
the tauonic model based on a measurement of the tt̄ cross
section in `+jets channel using topological event informa-
tion [17]. Exploring the full set of channels as presented
here improves the limits derived in the cross section ratio
method for the leptophobic and for the tauonic model in
the high MH+ region.
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FIG. 2: Upper limit on B(t → H+b) for the tauonic (a) and
leptophobic (b) model versus MH+ . The yellow band shows
the ±1 SD band around the expected limit.

We also extract upper limits on B(t → H+b) mixing
the tauonic and leptophobic models under the assump-
tion B(H+ → τ+ν) + B(H+ → cs̄) = 1. We repeat
the extraction of upper limits on B(t → H+b) in the
range of 0 ≤ B(H+ → τ+ν) ≤ 1 in steps of 0.1. For
each assumed MH+ we parametrize the expected and ob-
served limits dependent on the mixture between tauonic
and leptophobic decays. Figure 3 shows upper limits on
B(t → H+b) as a function of B(H+ → cs̄). As expected,
the upper limit decreases with increasing tauonic decay
fraction.

IV. SIMULTANEOUS EXTRACTION OF
B(t → H

+
b) AND σtt̄

The search for charged Higgs bosons in top quark de-
cays is based on the distribution of tt̄ events between the
various final states. Naturally, it is also sensitive to the
total number of tt̄ events. This results in a large system-
atic uncertainty due to the theoretical uncertainty in the
tt̄ cross section calculations. If σtt̄ and B(t → H+b) are
measured simultaneously the limit becomes independent
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FIG. 3: Upper limits on B(t → H+b) parametrized as function of B(H+
→ cs̄) for different assumed MH+ . The yellow band

shows the ±1 SD band around the expected limit.

of the assumed theoretical tt̄ cross section. Furthermore,
the luminosity uncertainty is almost fully absorbed by
the fitted cross section.

We perform a simultaneous fit of σtt̄ and B(t → H+b)
for the tauonic model. The fitting and limit setting pro-
cedure is the same as described in Sec. III, with two free
parameters instead of one. Table III shows the uncer-
tainties on B(t → H+b) and σtt̄ for MH+ = 80 GeV.
The correlation between the two fitted quantities is about
70% for MH+ up to 130 GeV and it reaches 90% for
MH+ = 155 GeV. For high charged Higgs boson masses,
where the correlation becomes high, the sensitivity de-
grades compared to the case where the tt̄ cross section is
fixed.

The tt̄ cross section is set to the measured value in the
generation of pseudo-datasets for the limit setting proce-
dure. For the fit to the pseudo-data, σtt̄ and B(t → H+b)
are allowed to float. In Table II the expected and ob-
served upper limits on B(t → H+b) as well as the simul-
taneously measured tt̄ cross section at a top quark mass
of 170 GeV are listed. Within uncertainties, the obtained
cross section for all masses of the charged Higgs boson
agrees with σtt̄ = 8.18+0.98

−0.87 pb, which was measured on
the same data set assuming B(t → W +b) = 1 [3].

In Fig. 4 the upper limits on B(t → H+b) for MH+

from 80 to 155 GeV are shown. For small MH+ , the
simultaneous fit provides an improvement of the sensi-
tivity of more than 20% compared to the case where the
tt̄ cross section is fixed. Furthermore, the tt̄ cross section
measured here represents a measurement independent of
the assumption B(t → W +b) = 1.

The simultaneous fit requires a reasonably small cor-
relation between the two fitted observables. Since at
present we have only included disappearance channels for
the leptophobic model, the correlation between B(t →
H+b) and σtt̄ is large (≈ 90%) for all charged Higgs bo-
son masses, and thus we have not used the simultaneous
fit method there.

TABLE III: Uncertainties on B(t → H+b) and σtt̄ for the
simultaneous fit in the tauonic model, assuming MH+ =
80 GeV.

B(t → H+b) σtt̄ (pb)
Source +1 SD −1 SD +1 SD −1 SD

Statistical uncertainty 0.067 -0.066 0.68 -0.64
Lepton identification 0.001 -0.001 0.16 -0.13

Tau identification 0.014 -0.014 0.12 -0.13

Jet identification 0.005 -0.005 0.07 -0.07

b jet identification 0.003 -0.003 0.31 -0.29

Jet energy scale 0.014 -0.014 0.10 -0.09

Tau energy scale 0.011 -0.010 0.10 -0.08

Trigger modeling 0.009 -0.000 0.12 -0.11

Signal modeling 0.014 -0.016 0.23 -0.23

Background estimation 0.003 -0.003 0.15 -0.14

Multijet background 0.036 -0.033 0.31 -0.34

Luminosity 0.002 -0.002 0.57 -0.48

Other 0.006 -0.006 0.17 -0.17

Total systematic uncertainty 0.047 -0.044 0.84 -0.77

V. INTERPRETATIONS IN
SUPERSYMMETRIC MODELS

The limits on B(t → H+b) as presented in Figs. 2, 3
and 4

are interpreted in different SUSY models and excluded
regions of [tan β, MH+ ] parameter space are derived. The
investigated MSSM benchmark models [8] depend on sev-
eral model parameters: µ is the strength of the super-
symmetric Higgs boson mixing; MSUSY is a soft SUSY-
breaking mass parameter representing a common mass
for all scalar fermions (sfermions) at the electroweak
scale; A = At = Ab is a common trilinear Higgs-squark
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FIG. 4: Upper limit on B(t → H+b) for the simultaneous fit
of B(t → H+b) and σtt̄ versus MH+ . The yellow band shows
the ±1 SD band around the expected limit.

coupling at the electroweak scale; Xt = A − µ cotβ is
the stop mixing parameter; M2 denotes a common SU(2)
gaugino mass at the electroweak scale; and M3 is the
gluino mass. The top quark mass, which has a significant
impact on the calculations through radiative corrections,
is set to the current world average of 173.1 GeV [14].

Direct searches for charged Higgs bosons have been
performed by the LEP experiments resulting into limits
of MH+ < 79.3 GeV in the framework of 2HDM [18].
Indirect bounds on MH+ in the region of tanβ < 40
were obtained for several MSSM scenarios [19], two of
which are identical to the ones presented in Sect.V C and
V D of this paper.

TABLE IV: Summary of the most important SUSY parameter
values (in GeV) for different MSSM benchmark scenarios.

parameter CPXgh mh-max no-mixing
µ 2000 200 200
MSUSY 500 1000 2000
A 1000 · exp(iπ/2)
Xt 2000 0
M2 200 200 200
M3 1000 · exp(iπ) 800 1600

A. Leptophobic model

A leptophobic model with a branching ratio of
B(H+ → cs̄) = 1 is possible in MHDM [4, 5]. Here
we calculate the branching ratio B(t → H+b) as a func-
tion of tanβ, and the charged Higgs boson mass including
higher order QCD corrections [20] using FeynHiggs [21].
Figure 5 shows the excluded region of [tan β, MH+ ] pa-
rameter space. For tan β = 0.5, for example, MH+ up to
153 GeV are excluded. For low MH+ , values of tanβ up
to 1.7 are excluded. These are the most stringent limits

on the [tan β, MH+ ] plane in leptophobic charged Higgs
boson models to date.
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FIG. 5: Excluded regions of [tan β, MH+ ] parameter space for
leptophobic model. The yellow band shows the ±1 SD band
around the expected limit.

B. CPX model with generation hierarchy

B(H+ → τ+ν) + B(H+ → cs̄) ≈ 1 can be realized in
a particular CPX benchmark scenario (CPXgh) [7] of the
MSSM. This scenario is identical to the CPX scenario
investigated in [19] except for a different choice of arg(A)
and an additional mass hierarchy between the first two
and the third generation of sfermions which is introduced
as follows:

MX̃1,2
= ρX̃MX̃3

, (3)

where X̃ collectively represents the chiral multiplet for
the left-handed doublet squarks Q̃, the right-handed up-
type (down-type) squarks Ũ (D̃), the left-handed doublet

sleptons L̃ or the right-handed charged sleptons Ẽ. Tak-
ing ρŨ,L̃,Ẽ = 1, ρQ̃,D̃ = 0.4 and requiring that the masses
of the scalar left- and right-handed quarks and leptons
are large MQ̃3,D̃3

= 2MŨ3,L̃3,Ẽ3
= 2 TeV, we calculate

the branching ratios B(t → H+b) including higher or-
der QCD and higher order MSSM corrections using the
CPXgh MSSM parameters in Table IV. The calculation
is performed with the program CPsuperH [22]. Figure 6
shows the excluded region in the [tan β, MH+ ] parameter
space. Theoretically inaccessible regions indicate parts
of the parameter space where perturbative calculations
can not be performed reliably. In the [tan β, MH+ ] re-
gion analyzed here, the sum of the branching ratios was
found to be B(H+ → τ+ν) + B(H+ → cs̄) > 0.99 ex-
cept for values very close to the blue region which in-
dicates B(H+ → τ+ν) + B(H+ → cs̄) < 0.95. The
charged Higgs decay H+ → τ+ν dominates for tanβ be-
low 22 and above 55. For the rest of the [tanβ, MH+ ]
parameter space both the hadronic and the tauonic de-
cays of charged Higgs bosons are important. In the re-
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gion 38 ≤ tan β ≤ 40, the hadronic decays of the charged
Higgs boson dominate and B(H+ → cs̄) > 0.95. For
large values of tan β, MH+ up to 154 GeV are excluded.
For low charged Higgs masses, tan β down to 23 are ex-
cluded. These are the first Tevatron limits on a CP-
violating MSSM scenario derived from the charged Higgs
sector.

C. No-mixing scenario

In the CP-conserving no-mixing scenario, the stop mix-
ing parameter Xt is set to zero, giving rise to a relatively
restricted MSSM parameter space. In the [tan β, MH+ ]
parameter space analyzed here the branching ratio is
B(H+ → τ+ν) > 0.99 except for very low values of
tan β and MH+ where B(H+ → τ+ν) > 0.95. We inter-
pret the results derived in the tauonic model using the
simultaneous fit in the framework of the no-mixing sce-
nario. The branching ratios B(t → H+b) are calculated
including higher order QCD and higher order MSSM cor-
rections using the no-mixing MSSM parameters as given
in Table IV. The calculation is performed with Feyn-

Higgs [21]. Figure 7 presents the excluded region of
[tan β, MH+ ] parameter space. For large values of tan β,
MH+ up to 145 GeV are excluded. For low MH+ , values
of tanβ down to 27 are excluded.

D. mh-max scenario

In the CP-conserving mh-max scenario the stop mix-
ing parameter is set to a large value, Xt = 2MSUSY.
The theoretical upper bound on the lighter CP-even neu-
tral scalar, mh, for a given value of tan β and fixed
mt and MSUSY is designed to be maximal. Therefore
the model provides the largest parameter space in mh

  [GeV]  + HM
80 90 100 110 120 130 140 150 160

β
ta

n
 

20

40

60

80

100

Theoretically inaccessible
Expected 95% CL limit
Excluded 95% CL region

-1DØ, L =1.0 fb

no-mixing scenario

FIG. 7: Excluded region of [tan β, MH+ ] parameter spae in
the MSSM for the no-mixing scenario. The yellow band shows
the ±1 SD band around the expected limit.

and as a consequence, less restrictive exclusion limits
on tan β than the other models. In the investigated
[tan β, MH+ ] parameter space, B(H+ → τ+ν) > 0.99
holds except for low values of tan β and MH+ , where
B(H+ → τ+ν) > 0.97. Thus we use the simultaneous fit
results within the tauonic model to derive constraints on
the mh-max scenario. The branching ratios B(t → H+b)
are calculated using FeynHiggs [21] including higher
order QCD and higher order MSSM corrections. The
mh-max MSSM parameters are given in Table IV.

Figure 8 shows the excluded region of [tan β, MH+ ] pa-
rameter space. For large values of tan β, MH+ up to
149 GeV are excluded. These are the most stringent lim-
its from the Tevatron to date. For low charged Higgs
boson masses, values of tan β down to 29 are excluded.
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FIG. 8: Excluded region of [tan β, MH+ ] parameter space in
the MSSM for the mh-max scenario. The yellow band shows
the ±1 SD band around the expected limit.
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VI. SUMMARY

We have performed a search for charged Higgs bosons
in top quark decays. No indication for charged Higgs
boson production in the tauonic or leptophobic model is
found. Upper limits at 95% CL on the B(t → H+b)
branching ratios are derived in different scenarios de-
pending on the values of B(H+ → cs̄) and B(H+ →
τ+ν). For the leptophobic model, B(t → H+b) > 0.22
are excluded for the MH+ range between 80 and 155 GeV.
For the tauonic model, B(t → H+b > 0.15 − 0.19 are
excluded depending on MH+ . In this model we have
also performed a model-independent measurement and
excluded B(t → H+b) > 0.12− 0.26 depending on MH+ .

We interpret the results in different models and ex-
clude regions in [tanβ, MH+ ] parameter space. For the
mh-max scenario, for example, MH+ up to 149 GeV are
excluded. These are the most restrictive limits to date

in direct searches for charged Higgs boson production in
top quark decays.
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